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A vortex is a topological defect in the superconducting condensate when a magnetic field is applied to a
type-II superconductor, as elucidated by the Ginzburg-Landau theory. Because of the confinement of the
quasiparticles by a vortex, it exhibits a circular-shaped pattern of bound states with discrete energy levels,
as predicted by the Caroli–de Gennes–Matricon theory in 1964. Here, however, we report a completely new
type of vortex pattern which is necklacelike in an iron-based superconductor KCa2Fe4As4F2. Our
theoretical analysis shows that this necklacelike vortex pattern arises primarily from selective off-shell
interference between vortex bound states of opposite angular momenta in the presence of rotational
symmetry breaking due to disorders. This fascinating effect can be observed in a system with a small Fermi
energy and wave vector, conditions fortuitously met in our samples. Our results not only disclose a novel
vortex structure, but also unravel a completely new quantum phenomenon in the superconducting
condensate.
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I. INTRODUCTION

In a type-II superconductor, vortices with quantized
magnetic flux Φ0 ¼ h=2e (with h the Planck constant
and e the elementary electric charge) are formed when the
magnetic field penetrates the superconductor. Bogoliubov
quasiparticles (QPs) exist in the circularly symmetric
vortex core with a radius of about the coherence length
ξ ≈ hvF=2π2Δ0 with vF the Fermi velocity and Δ0 the bulk
superconducting gap value. Based on the Ginzburg-Landau
theory [1], the superconducting gap Δ is zero at the vortex
center. It gradually increases along the radial direction and
finally reaches Δ0. Since the surrounding superconducting
region is protected by the energy gap, the vortex core can be
considered as a circular quantum well for QPs in a clean

superconductor. As a result, vortex bound states (VBSs) or
the so-called Caroli–de Gennes–Matricon (CdGM) states
are formed [2]. Based on a simplified analytic solution to
the Bogoliubov–de Gennes (BdG) equations by assuming a
linear radial (r) variation of Δ, it is predicted that the
discrete energy levels of the VBSs should appear at Eμ ≈
μΔ2

0=EF (the coefficient μ ¼ �1=2;�3=2;�5=2;…) with
EF the Fermi energy [2–4]. In most superconductors, Δ0 is
very small compared to EF, and, therefore, the energy
interval Δ2

0=EF between neighboring levels of VBSs is too
small to distinguish. However, in some iron-based super-
conductors, EF is comparable with Δ0, making them ideal
platforms for detecting the discrete VBSs. The clear
observation of discrete VBSs, especially the high-order
ones, was achieved in FeTe0.55Se0.45 [5,6] and FeSe
monolayer [7] by scanning tunneling microscopy or spec-
troscopy (STM or STS). In these studies, the ratio of the
lowest bound state energies is close to the original
prediction of 1∶3∶5. However, this ratio is found to deviate
from the widely believed value in KCa2Fe4As4F2 (K12442,
Tc ≈ 33.5 K) [8]; theoretical analysis indicates that the
deviation originates from the nonlinear relationship between
Δ and r in the extreme quantum limit condition [9–12]. In
addition, spatial oscillations of the bound states can be obser-
ved in the radial direction of the vortex core [8–10,13,14].
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Meanwhile, in some iron-based superconductors with topo-
logical nontrivial band structures, Majorana zero mode, as a
particular VBS with μ ¼ 0, can be observed in the vortex
cores [15–18], which may be used for topological quantum
computing. Usually, the vortex core image and VBSs keep
the rotational symmetry, showing a round ring shape of
continuous intensity of density of states (DOS). An earlier
STM/STS study on 2H-NbSe2 shows that the CdGM states
can be influenced by magnetic impurity scattering, forming
the asymmetric pattern of the VBSs [19].
Here, we report a new type of VBSs in K12442 with

clear oscillations along the angular direction of the ring
featuring the DOS, forming a necklacelike vortex pattern.
This has never been predicted by any previous theoretical
studies. Based on theoretical calculations involving appro-
priate disorder scattering, we find that this novel phenome-
non can be primarily interpreted by the impurity-induced
selective interference between CdGM states of opposite
angular momenta. The number of peaks in the interference
pattern along the ring provides a direct probe of the
microscopic quantity, the angular momentum of the
CdGM states in the otherwise absence of impurities.

II. RESULTS

A. Observation of the necklacelike vortex pattern

For a superconductor with an isotropic gap, the discrete
energy levels of VBSs are schematically shown in Fig. 1(a)
based on the calculated results (see Fig. S1 in Supplemental

Material [20]). The calculation is based on the exact
diagonalization of the BdG Hamiltonians (see Sec. V) in
the extreme quantum limit, and the discrete VBSs can be
seen at different energies. Figure 1(b) shows the intensity of
the DOS at zero bias, which is induced by the thermal
broadening of the lowest levels of VBSs. When the energy
is not zero, VBSs manifest themselves as continuous
rings of the DOS along the angular direction, as shown
in Fig. 1(c). As the energy increases, higher levels of VBSs
become dominant and the DOS ring expands its radius
[Fig. 1(d)]. In addition, there is a spatial oscillation of the
DOS along the radial direction with the period of π=kF
[9,13,14], where kF is the Fermi wave vector, and one can
see the secondary rings outside the main DOS rings in
Figs. 1(c) and 1(d).
Although K12442 is a multiband superconductor [21],

the major contribution to the surface DOS is given by the
smallest holelike α pocket near Γ point with kF ≈ 0.1π=a0
from our previous work [22]. Discrete VBSs can be
observed in the vortex core (Figs. S3 and S4 [20]) because
the extreme quantum limit is satisfied [8]. Vortices can
be imaged by differential conductance (dI=dV) mapping
at different energies under a magnetic field of 2 T
[Figs. 1(e)–1(g) and S2 in Supplemental Material [20] ].
The lowest VBS (μ ¼ �1=2) peak can be observed at about
�1.0 meV on the spectrum measured at the vortex center
(Fig. S2 [20]), while the higher-order VBS peaks can be
observed when moving away from the core center. A full
gap feature with Δ0 ¼ 5.2 meV can be clearly seen when

FIG. 1. CdGM states and necklacelike vortex bound states. (a) Schematic diagram of discrete VBS energy levels and the DOS rings
based on the calculations of the BdG equations. (b)–(d) Evolution of local DOS of the calculated CdGM states with energy. Δ0 is the
superconducting gap far away from the vortex core, and the parameter kFξ ¼ 5. (e)–(g) The dI=dV mappings of a necklacelike vortex
core measured at different energies inside the superconducting gap in KCa2Fe4As4F2.
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the location is far away from the vortex center, indicating
nodeless superconductivity of K12442 [22,23]. Comparing
the experimental [Figs. 1(f) and 1(g)] and the calculated
[Figs. 1(c) and 1(d)] images of a vortex core at different
energies, one can see that the radial variations of DOS show
similar behaviors. However, the distribution of DOS along
the angular direction appears to strongly deviate from the
theoretical result: The calculated DOS exhibits circular
rings with uniform and continuous DOS at finite energies
below Δ0, while the measured DOS shows a periodic
oscillation in angular direction and the vortex core shows a
necklacelike pattern. The oscillation of DOS arising
from the VBSs behaves as alternative bright and dark
spots along the necklacelike pattern [Figs. 1(f), 1(g), and S2
in Supplemental Material [20] ]. The average period of
these oscillations is about 3.8 nm, which is close to the
value of π=kF in K12442 [22].
The necklacelike pattern has also been observed in other

vortex cores (Figs. S3 and S4 [20]). To further study this
novel VBS, we measure the dI=dV mapping in a large area
[Figs. 2(a) and S5 in Supplemental Material [20] ] to see
whether this phenomenon is universal in the system. Under
a magnetic field of 2 T, vortices are clearly observed in this
area [Figs. 2(b)–2(d)]. However, they do not form a perfect
hexagonal lattice, which might be attributed to the vortex
pinning effect. In addition, some vortices seem to show a
little squarish shape, especially at high energies, which may
be due to a slightly fourfold anisotropy of the Fermi
velocity and/or the superconducting gap. But this seems
to have no influence on the oscillation behavior of DOS on
the ring nor the average distance between the neighboring

spots (Fig. S5 [20]). It is evident that the necklacelike
pattern exists for each vortex and does not depend on the
slightly different shape of the vortex.

B. Interference of the VBSs along the angular direction

The angular oscillation behaviors of the VBSs motivate
us to consider the interference effect between different
CdGM states. For convenience, we use integer quantum
number l (l ¼ μ − 1=2) to label the angular momentum of
the standard CdGM states:

�
ulðrÞ
vlþ1ðrÞ

�
¼

�
ψ lðrÞe−ilφ

ψ lþ1ðrÞe−iðlþ1Þφ

�
; ð1Þ

with energies El ¼ ðlþ 1=2Þω0, where ω0 ∼ Δ2
0=EF and

ψ l ∼ JlðkFrÞ for r ≪ ξ [2]. Here, Jl is the lth Bessel
function of the first kind. The DOS is given by
ρðr;ωÞ ¼ 2

P
l julj2δðω − ElÞ, where 2 comes from the

spin degeneracy. Clearly, the phase information of the
CdGM states is lost in the expression of ρðr;ωÞ, leaving a
continuous circular DOS ring in clean superconductors
[Figs. 1(b)–1(d)]. But in the presence of disorders, the
rotational symmetry is broken. Few magnetic impurities
close to a vortex core can mix the VBSs and induce the
asymmetric shape of the vortex core [19], but these sparse
impurities cannot lead to the angular oscillation of the
VBSs. In the present sample, there are sparse impurities
with strong scattering potentials. They can induce an in-gap
impurity bound state and behave as bright dots [22], as
shown in Fig. 3(a). Besides, there are dense impurities with
weak scattering potentials. They cannot induce an apparent
in-gap state but act as scattering centers to quasiparticles,
forming quasiparticle interference (QPI) patterns [Fig. S2
(i) [20] ] at high energies [22]. Note, in the usual QPI
picture, the leading effect of the static impurities is the
scattering between degenerate extended states [24–26].
Here, the impurities are also expected to mix the VBSs.
However, the effect and mechanism are very different.
First, the VBSs are nondegenerate, so the elastic scattering
between equal-energy states is missing. Second, the mixing
of VBSs of different angular momenta is possible only
when the impurities break the rotational symmetry. Third,
the CdGM states are spatially well separated, with wave
function maximum along a ring of radius that is roughly
proportional to the (absolute value of the) angular momen-
tum; see Fig. 1(a). The scattering matrix of the impurity
potential between two VBSs is, therefore, very restrictive,
and the most favorable case is the scattering between VBSs
of opposite angular momenta, �l, that are maximally
overlapped.
As such, the interference is between VBSs of unequal

energy, an example of the off-shell scattering effect.
The effect of such scattering can be captured by the
standard nondegenerate perturbation theory. In the first-
order approximation, the disorder-corrected CdGM states

FIG. 2. dI=dV mappings of multiple vortices with necklacelike
VBSs in a large area. (a) STM topography of an area in
KCa2Fe4As4F2. (b)–(d) dI=dV mappings measured at different
energies (μ0H ¼ 2 T). The measuring region is the same as (a).
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(unnormalized) are given by ũl ¼ ul þ
P

l0 αl0lul0=
ðEl − El0 Þ and ṽlþ1 ¼ vlþ1 þ

P
l0 αl0lvl0þ1=ðEl − El0 Þ with

the energies Ẽl ¼ El þ αll þ
P

l0 jαl0lj2=ðEl − El0 Þ. Here,
αl0l ¼ hl0jV̂jli ≈ R ðu�l0Vul − v�l0þ1

Vvlþ1Þd2r with V the
impurity potential. Therefore, all l0th VBSs other than l
have contributions to ũl or ṽlþ1. For reasons to become
clearer later, we first neglect all other states except −l in
order to obtain a minimal model to describe the exper-
imentally observed oscillation behavior. Under this two-
level approximation, the resulting local DOS is given by

ρðr;ωÞ ¼ 2
X
l

½1þ jβlj2 þ 2jβlj cosð2lφþ φ0lÞ�jψ lj2

× δðω − ẼlÞ; ð2Þ

where φ0l is determined by βl ¼ α−l;l=ðEl − E−lÞ. In
practice, we can use it to simulate the STM data, and βl
is the only fitting parameter, which determines the ampli-
tude and phase of the oscillation. Clearly, there are 2l
oscillations in the circular direction, and the angular
oscillation period is Θl ¼ 2π=2l. On the other hand, from

the radial wave function ψ lðrÞ ∼ JlðkFrÞ, we have an
estimation of the radius Rl ∼ l=kF, and, thus, the necklace
oscillation wave length λ ¼ RlΘl ∼ π=kF. This provides an
essential understanding of the necklace VBSs and demon-
strates that the number of peaks in the interference pattern
on the ring is directly governed by the important micro-
scopic quantity, the angular momentum of the otherwise
unperturbed CdGM states.

C. Fitting results of the experiment data

The two-level approximation [Eq. (2)] allows us to fit
the STM data. The radial QP wave functions ψ l can be
calculated by solving the BdG equations (Sec. V).
Figures 3(d)–3(f) show the two-level approximation results,
which capture the key features of the experimental results.
In the above two-level (�l) analysis, we ignore the
correction of the levels l0 ≠ −l. In principle, all states other
than �l also have contributions to ũl or ṽlþ1 which
inevitably generate additional harmonics in the wave
functions and, thus, complicate the DOS with the oscil-
lation number other than 2l (Sec. 1and Figs. S6 and S7
in Supplemental Material [20]). In order to justify or go

FIG. 3. Isolated vortex core and calculation results by using the disorder-corrected CdGM states. (a)–(c) dI=dV mappings of a
necklacelike vortex core measured at different energies (μ0H ¼ 0.2 T). (d)–(f) Two-level approximation with the parameter kFξ ¼ 5.7.
Here, kF is set to a similar value as the experimental data, and the theoretical patterns are plotted with the same scale bar as the
experimental data. (g)–(i) Numerical calculation results by exact diagonalization of the disorder-corrected CdGM states (nimp ¼ 10% of
all Fe sites, and V imp ¼ 0.36Δ0).
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beyond the two-level approximation, we also perform exact
diagonalization calculations on disordered lattices. The
numerical results are shown in Figs. 3(g)–3(i). Not only
is the radius of the calculated DOS ring consistent with the
experimental data, but also the DOS oscillations along the
angular direction in the calculation results agree well with
the experimental results; even some imperfect oscillation
features seen in the experimental data can be simulated.
Furthermore, the radiative feature of the spots is also well
reproduced. It should be noted that the full-fledged
numerical calculations [Figs. 3(g)–3(i)] without assuming
any selection rules are consistent with the qualitative
picture of selective interference [Figs. 3(d)–3(f)], justifying
the qualitative two-level approximation. However, we
should emphasize that the two-level approximation is
inherently approximate and does not quantitatively agree
with the exact diagonalization results or the experimental
observations. Its primary purpose is to provide an intuitive
framework for interpreting our experimental data. By
contrast, the exact diagonalization results offer a more
accurate explanation of the experimental observations. At
low energies, the radius is too small and the number of
spots in the DOS ring is too few, making the oscillation
difficult to discern. Nevertheless, it still shows some signs
of oscillatory behavior with a similar periodicity. At higher
energies near the superconducting gap [Figs. 3(c) and S2 in
Supplemental Material [20] ], the mixing of the VBSs and
the continuum states above the gap cannot give rise to the 2l
oscillation along the ring but only π=kF oscillation along
random directions, leading to a diffusive feature of DOS.

Indeed, the primary and secondary rings smear together at
high energies according to the calculation results.
To gain better understanding of our experimental results,

we make more quantitative comparisons between the exper-
imental and theoretical results. Through analyzing the local
DOS distribution of the necklacelike VBSs, for example,
Figs. 3(a)–3(c) and 4(a), we can get the oscillation numbers,
namely, n, for each VBS. Along the central line of the
primary VBS ring [Fig. 4(a)], the local DOS shows about
n ¼ 17 complete oscillations [Fig. 4(b)], and this value is
close to the oscillation number 2l ¼ 18 from the calculations
[Fig. 3(e)]. Since the radius r of the VBS ring and 2l
can characterize the VBS pattern along the radial and
angular direction, respectively, we plot these values at
different energies and show them in Figs. 4(c) and 4(d).
The calculation results agree well with the experimental
data. This agreement is also observed in several other vortex
cores (Figs. S2 and S3 [20]). Therefore, inversely, one
can determine the angular momentum l by simply counting
the number of peaks (2l). In this way, to the best of our
knowledge, our work actually measures the angular
momenta l of the CdGM states experimentally for the first
time. The oscillation period is calculated by 2πr=2l, and the
obtained periods are 3.9� 0.6, 3.8� 0.6, and 4.1� 1.3 nm
at E ¼ 0.42Δ0, 0.6Δ0, and 0.68Δ0, respectively. These
obtained periods are close to the value of π=kF ≈ 3.9 nm.

D. Results of the VBSs with variable disorders

In the above, we have learned that the necklace VBSs
can be primarily explained by disorder-induced selective

FIG. 4. Comparison of experimental and calculation results. (a) A representative dI=dV mapping of necklacelike VBS pattern plotted
in a three-dimensional manner after smoothed. (b) The distribution of dI=dV intensity after smoothing along the DOS ring marked by
the black arrow in (a). The initial angle is from the dashed line in (a). The red dashed curve is a sinusoidal function with 17 complete
oscillations in a circle. (c) Comparison of the radii of VBS rings acquired from experiment (solid circles) and calculation (empty circles).
(d) Comparison of the number of peaks in the DOS ring, i.e., n for experiment (solid circles) and 2l for calculation (empty circles). The
experimental results consist well with the calculation result with kFξ ¼ 5.7. The error bars in (c) and (d) are determined by standard
errors of the mean values of the radii and the uncertainty in counting the oscillation numbers, respectively.
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interference between CdGM states of opposite angular
momenta. Next, we investigate the effect of disorder
strengths and densities. For disorders of density nimp

and scattering potential Vi distributed uniformly in
[−V imp, V imp], we can estimate the characteristic scale

σl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjα−l;lj2i

q
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Γimp=l

p
by formally averaging over

disorder configurations. Here, Γimp ∝ nimpV2
imp is the dis-

order scattering rate. According to Eq. (2), we need Γimp to
be large enough (not in the clean limit) to observe the
oscillation behavior. On the other hand, the energy level El
is also shifted by the disorders. When the shift is much
larger than the energy spacing between adjacent CdGM
states, the original CdGM states are expected to be
destroyed, and, hence, the above analysis will break down.
This provides an upper bound of Γimp (not in the dirty limit)
to observe the necklace rings. The above analyses are
checked by numerical calculations systematically. The
main results are summarized in Fig. 5. The VBS patterns
versus nimp and V imp are roughly divided into three regimes,
labeled as I, II, and III, respectively [Fig. 5(a)]. Typical
local DOS of the three regimes are shown in the insets.
With increasing scattering rate Γimp, the continuous ring
(in regime I) is first broken into the necklace shape (in
regime II) and finally destroyed (in regime III). From the
angular distribution of local DOS along the primary rings
[Fig. 5(b)], we can see a transition from regime I to III with
increasing Γimp. More detailed results are shown in Figs. S8
and S9 in Supplemental Material [20]. The results in regime
III are well supported by the STM measurements of
Ni-doped K12442 samples, where the disorder scattering
becomes strong, and the VBSs do not show a well-formed
necklace pattern [27]. On the other hand, as discussed
above and shown in our calculation (Figs. S10 and

S11 [20]), the condition for clearly observing the discrete
CdGM states is not the same as that to see the necklace
vortex pattern. In the former case, one needs a clean system
with a very small disorder scattering rate Γimp; while in the
latter case, an appropriate disorder scattering rate is
required. For example, in our previous studies [8], we
have seen the discrete CdGM states; meanwhile, in some
vortices, we also see the trace of the necklacelike vortex
pattern. The occurrences of these two effects are not
exclusive to each other but should be dependent on Γimp.

III. DISCUSSION

Our experiments reveal a new kind of VBS pattern which
is necklacelike. Although some vortex patterns look a little
squarish at high energies [Figs. 2 and 3(c)], we argue
that the necklacelike vortex pattern is not induced by the
anisotropy of the superconducting gap or the Fermi
velocity. It is clear that the seemingly parallel “sides” of
the squarish vortices are approximately along the crystal-
line axes of the reconstructed surface by K or Ca atoms (the
same as the Fe-Fe direction). Some DOS modulation spots
in the side regions of the squarish vortex are roughly
oriented along two orthogonal directions. However, in the
corner regions of the square-shaped vortex, the DOS
modulations orient clearly in the diagonal directions
showing a radiative feature, which deviates from the
above-mentioned two orthogonal directions. Therefore,
the spots of DOS modulations show a radiative feature
with orientations always perpendicular to the contour of the
DOS ring. One may argue that the necklacelike pattern of
the VBSs may be caused by the anisotropic superconduct-
ing gap or the anisotropic Fermi surface, which can break
the rotational symmetry of the vortex core [28,29]. In these
cases, vortex cores may exhibit twofold, fourfold, or sixfold

FIG. 5. VBS pattern versus the disorder density and strength. (a) The (nimp, V imp) parameter space contains three regimes: I (ring),
II (necklace), and III (featureless). Typical local DOS distributions of the three regimes are shown in the insets. The dark dashed lines
show the approximate boundaries between neighbored regimes. (b) Angular distributions of the DOS along the same ring for different
V imp. As V imp increases, the curves behave differently from regime I to III.
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symmetric shapes following the rotational symmetry of Δ0

or vF [30–39]. The vortex-core patterns expand in size with
increasing energy, but the shape and symmetry do not
change clearly [33,34]. Furthermore, this cannot lead to
multiple oscillations of DOS with the periodicity of π=kF
along the angular direction. In order to check whether the
anisotropy in vF can induce the oscillation of VBSs along
the angular direction, we calculate the VBSs by solving the
BdG equations in a clean system with a fourfold symmetric
Fermi surface (Fig. S12 [20]), from which one can see the
squarish vortex core pattern especially at high energies, but
we do not see any signatures of the DOS modulations along
the contour of the VBS ring. In addition, from our experi-
ments, we can easily see that the vortex patterns at low
energies exhibit a roughly round shape with DOS modu-
lation spots along the radiative direction [Figs. 1(f), 1(g),
3(a), and 3(b)]. This can exclude the possibility that the
DOS modulation along the angular direction is induced by
the anisotropic Fermi velocity or the gap anisotropy.
As we mentioned above, this exotic pattern of VBSs has

been observed in the present iron-based superconducting
system with a small Fermi energy EF or a large Fermi
wavelength λF, while in the Ni-doped K12442 with a larger
residual resistivity (higher disorder density or stronger
scattering potential), this phenomenon was not observed
[27]. In short, to observe the circular oscillatory VBS rings,
we need a small kF (large λF) and an appropriate disorder
scattering rate Γimp, which are not easy to satisfy in most
superconductors. However, these conditions are exactly
satisfied in some iron-based superconductors, like our
present system K12442. Our observation of the novel
necklacelike vortex pattern may inspire researchers to
see whether such a phenomenon also exists in topological
nontrivial vortex with Majorana zero mode and other
integer-quantized VBSs, and the recent data seem to show
some feature of this [17].

IV. CONCLUSION

In summary, we discovered an unprecedented necklace-
like VBS in iron-based superconductor K12442 using
STM. In contrast to the continuous DOS ringlike pattern
predicted by the BdG equations in the clean limit, here we
find a multiple oscillatory feature of VBSs along the
angular direction, which has never been observed before
and predicted by any previous theoretical studies. The DOS
oscillation period is found to be close to π=kF. In order to
interpret the observation, we propose a picture of selective
off-shell interference between CdGM states primarily of
opposite angular momenta as a result of wave-function
matching and rotational symmetry breaking due to disor-
ders. The numerical calculations based on this model
reproduce nicely the necklacelike VBSs, which can be
most favorably observed in a system with a small Fermi
wave vector kF and appropriate disorder scattering rate
Γimp. This is a significant discovery which provides a new

way to detect the angular momenta of the CdGM states
experimentally. Our results shed new light on the under-
standing of the nature of QPs and vortices in super-
conductors with a small Fermi energy and will stimulate
further interest in experimental and theoretical studies.

V. METHOD

A. Sample growth and STM/STS measurements

The K12442 single crystals were grown by the self-
flux method [40]. A scanning tunneling microscope
(USM-1300, Unisoku Co., Ltd.) was used to carry out
the STM/STS measurements. The samples of K12442
were cleaved at about 77 K in an ultrahigh vacuum with
a base pressure of about 1 × 10−10 Torr and then trans-
ferred to the STM head. Electrochemically etched tungsten
tips were cleaned by electron-beam heating and then used
for STM/STS measurements. A typical lock-in technique
was used in tunneling spectrum measurements with an ac
modulation of 0.1 mVand a frequency of 931.773 Hz. Set-
point conditions for tunneling spectrum measurements are
Vset ¼ 10 mV and Iset ¼ 200 pA. All the experimental
data were measured at about 0.4 K.

B. Calculations on a lattice model with disorders

We have performed numerical calculations on a square
lattice with the Hamiltonian given by

H ¼ −t
X
hijiσ

ðc†iσcjσ þ H:c:Þ þ
X
iσ

ðVi − μcÞc†iσciσ

þ
X
i

ðΔic
†
i↑c

†
i↓ þ H:c:Þ; ð3Þ

where c†iσ creates an electron on site i with spin σ, t is the
nearest-neighbor hopping taken as the energy unit, and μc is
the chemical potential. The pairing function is approxi-
mated as Δi ¼ Δ0 tanhðri=ξÞeiϕi , where (ri, ϕi) are polar
coordinates of the site i relative to the vortex center.
We have added scalar disorder potentials Vi following a
uniform distribution [−V imp; V imp] and the density nimp

defined as the ratio between the impurity sites and Fe atoms
in a layer. By exact diagonalization, the low-energy bound
states En and (un, vn) are obtained on the L × L lattice,
from which the local DOS is given by

ρði;ωÞ ¼ 2

π

X
n

junðiÞj2η
ðω − EnÞ2 þ η2

; ð4Þ

where η is the smearing factor. In calculations, unless
specified otherwise, we set μc ¼ −3.5, Δ0 ¼ 0.1, ξ ¼ 10,
L ¼ 200, and η ¼ 0.004. By these parameters, we have
kFξ ≈ 7, which is similar to the Γ pocket in K12442.
For nimp ¼ 0.2 and Vimp ¼ 3Δ0, we plot the wave

functions jũlj2 with l ¼ 0;…; 15 in Fig. S8 [20]. The
disorder-induced oscillation can be seen for all the states
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except l ¼ 0. Of course, for the several low-energy states,
since the numbers of necklace oscillations are small, they
are easy to be broken by disorder and difficult to identify
accurately. On the other hand, for high-energy states, the
oscillation is clearly seen and one can always perform
Fourier transformation to extract the leading oscillation
period. Next, we scan the (nimp, V imp) plane to study the
condition to observe the necklacelike behavior. The results
of jũ6j2 for a series of (nimp, V imp) are shown in Fig. S9
[20]. Clearly, the complete ring is first broken into the
necklace shape and finally destroyed by increasing either
nimp or V imp. These results can be roughly understood as
explained in the main text: A single parameter Γimp ∝
nimpV2

imp can be used to describe the vortex bound states
from clean limit (ring) to dirty limit (none), and the
necklacelike pattern occurs in between.
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